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Quantum theory of surface plasmons is very important for studying the interactions between light and different metal
nanostructures in nanoplasmonics. In this work, using the canonical quantization method, the SPPs on nanowires and
their orbital and spin angular momentums are investigated. The results show that the SPPs on nanowire carry both orbital
and spin momentums during propagation. Later, the result is applied to the plasmonic nanowire waveguide to show the
agreement of the theory. The study is helpful for the nano wire based plasmonic interactions and the quantum information
based optical circuit in the future.
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1. Introduction
It is well known that surface plasmons polaritons (SPPs)

existing at interfaces between metals and dielectrics are co-
herent collective oscillation of free electrons (with coupled
electromagnetic field) at the surface of metal. The unique
properties of plasmons on nanoscale metallic systems have
produced a number of dramatic effects and interesting ap-
plications, such as molecule detection with surface-enhanced
Raman scattering,[1–3] biosensing,[4,5] waveguiding,[6–8] en-
hanced interactions,[9,10] and switching devices below the
diffraction limit.[11,12] Plasmonic nanowires have been attract-
ing a lot of attention as SPP waveguides, analogy to opti-
cal fiber waveguides but within a hundred nanometers scale
cross section, which breaks the diffraction limit. The strong
confinement and small mode volume of plasmonic wires fa-
cilitate the strong coupling between quantum emitters and
nanowire,[13,14] the low Q factor Fabry–Pérot resonator,[15]

and nanowire-wire based plasmonic devices and chips.[11,16,17]

The properties of keeping quantum information like entan-
glement of plasmonic waveguides[18–21] now have the poten-
tial applications in quantum information and fundamental re-
searches.

Surface plasmons are quantized electric charge density
waves, while usually a lot of the phenomena can be illustrated
with classical Maxwell equations in this boosting area in the
past twenty years.[22] In the meantime, quantum theory de-
scriptions were also developed to explain the phenomena such
as non-locality,[23] tunneling,[24,25] hot electrons,[26–28] and so

on.[29] Especially quantization of surface plasmons for com-
mon systems like plane metal interface[30] and nanoparticle[31]

has been developed to deal with the interactions between the
plasmons and the surrounding molecules,[32–34] which is, in a
lot of conditions, beyond the Maxwell’s theory. Now quantum
plasmonics has been a rapid growing field that involves the
study of the quantum properties of SPs and their interaction
with matters at the nanoscale.[35]

The quantization process was usually performed by quan-
tizing the electric field or considering the hydrodynamics
meantime. Using Hopfield’s approach,[36] Elson and Ritchie
reported the quantization scheme for SPPs on a metallic sur-
face considering the hydrodynamics.[37] Archambault et al.
reported the quantization scheme of the surface wave on a
plane interface without any specific model of the dielectric
constant.[38] Huttner and Barnett introduced a new quantiza-
tion method by extending Hopfield’s approach to polaritons
in dispersive and lossy media.[39] In Archambault’s works,
they redid the quantization of the plasmons on plane interface
in modern fashion for explaining the spontaneous and stimu-
lated emission of SPPs.[38] Waks have re-quantized plasmons
on nanoparticles under quasi-static approximation for describ-
ing the coupling of a dipole and a particle. And in Board-
man’s work, the SPPs in different typical coordinates were
dealt in common way with Bloch hydrodynamical model.[40]

However, quantization of SPPs on cylindrical nanowires needs
more investigation to illustrate more details and phenomena.

In this paper, a quantization scheme of SPPs on a cylin-
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drical nanowire waveguide is introduced. The canonical quan-
tization method is used, which is to identify the generalized
coordinates and conjugate momentums. After getting the ex-
pressions in Fock states, the orbital and spin angular momen-
tums are deduced. With the results one will find that the modes
on the nanowire waveguide carry both orbital and spin angu-
lar momentums, which is consistent with the classic theory
result from Picardi.[41] Following that, the formulas are ap-
plied to describe the SPPs on a nanowire in the waveguide,
which shows good agreement. With the properties, SPPs on
nanowires can easily carry quantum information and keep the
entangle properties of the incident light.[20,42–44] The results
will be very helpful in the quantum information and light–
matter interactions research.

2. Quantization description of surface waves
Let us consider SPPs propagating on the interface of a

cylindrical metal nanowire (ε2 = 1−ω2
p/ω2, the imaginary

part is ignored because in the resonance range, the dissipation
is small, which is also for avoiding the non-orthogonality of
the expending bases) along z axis with radius R in a homoge-
neous lossless dielectric medium (ε1 > 0). The electric and
magnetic fields satisfy

∇2
{

𝐸
𝐻

}
−µε

∂ 2

∂ t2

{
𝐸
𝐻

}
= 0. (1)

The solutions of 𝐸 and 𝐻 in the cylindrical coordinates can
be deduced in standard steps (Appendix A).[14]

kΦ↪m

kz↪m

k↪m

Fig. 1. Schematic illustration of SPPs propagating on a plasmonic cylin-
drical waveguide, 𝑘m≡𝑘‖,m = 0 · �̂�+mkφ �̂�+ kz,m�̂�.

To simplify the process in the following, the electro-
magnetic scalar and vector potentials Φ and 𝐴 working in
Coulomb q gauge (Φ = 0,∇ ·𝐴 = 0) are introduced here.
With 𝐸 (𝑟, t) =− 1

c
∂𝐴(𝑟,t)

∂ t and 𝐻 (𝑟, t) = 1
µ0
∇×𝐴(𝑟, t), the

vector potential 𝐴(𝑟, t) expansion over modes in a volume V
can be expressed as

𝐴(𝑟, t) =
1√
V ∑

k,m
𝐴k,m (t)ei𝑘·𝑟, (2)

𝐴k,m (t)ei𝑘·𝑟 = − i
ω

{[
im

k j,mρ
a j,mFj,m

(
k j,m⊥ρ

)
+

ik‖,mk j,m⊥

k2
j,m

b j,mF ′j,m
(
k j,m⊥ρ

)]
�̂�

+

[
−

k j⊥
k j

a j,mF ′j,m
(
k j,m⊥ρ

)
−

mk‖
k2

j ρ
b j,mFj,m

(
k j,m⊥ρ

)]
�̂�

+
k2

j,m⊥

k2
j,m

b j,mFj,m
(
k j,m⊥ρ

)
�̂�

}
ei(mφ+k‖,mz)e−iωt

= 𝐴k,m (t)ei𝑘‖,m·𝑟 =𝐴k,m (t)ei𝑘m·𝑟, (3)

where k j,m⊥=
√

k2
j − k2

‖,m, 𝑘m≡𝑘‖,m is defined just for simple,

the phase factor ei𝑘m·𝑟 = ei(mφ+k‖,mz) shows that the surface
waves have both components on z and φ directions (Fig. 1).
𝑘m = 0 · ρ̂+mkφ �̂�+kz,m�̂�, 𝑟= ρ�̂�+φρ�̂�+z�̂�. Here kφ = 1/ρ

and rφ = φρ are set to keep the dimensional consistency.
The subscript j = 1,2 represents the region outside and in-
side of the cylinder nanowire boundary characterized by dif-
ferent dielectric functions. m is the azimuthal quantum num-
ber. The functions F1,m (x) = Hm (x) and F2,m (x) = Jm (x) are
Hankel and Bessel functions. a j,m and b j,m are arbitrary coef-
ficients, which can be fixed by imposing the boundary condi-
tions of interface between the wire and surrounding dielectric.
𝐴k,m (t) is the time-dependent amplitude and can be written
as 𝐴k,me−iωt . Because each mode in the waveguide can be
represent by order m, in the following we use m to replace km

and 𝐴m to replace 𝐴k,m for the modes subscript. Due to the
normalization condition∫

d3rei𝑘m·𝑟e−i𝑘m′ ·𝑟 =V δmm′ (4)

and the orthogonal of the Bessel function, different modes are
orthogonal. The amplitudes 𝐴m are complex. The complex
conjugate item is added to make the field be real

𝐴(𝑟, t) =
1

2
√

V ∑
k,m

[
𝐴m (t)ei𝑘m·𝑟 + c.c.

]
. (5)

The canonical momentum 𝑝(𝑟, t) = 1
4πc2 �̇� satisfies the com-

mutation relation[45][
𝐴m (𝑟, t) ,𝑝m′

(
𝑟′, t
)]

= ih̄δm,m′δ (𝑟−𝑟′). (6)

Now define the cannonical coordinates and momentums as

𝑄m =

√
1

4πc2 (𝐴m +𝐴*
m), (7)

𝑃m =− iω√
4πc2

(𝐴m−𝐴*
m), (8)

which make

𝐴(𝑟, t) =

√
4πc2

2
√

V ∑
m

[
𝑄mcos𝑘 ·𝑟− 1

ωm
𝑃msin𝑘 ·𝑟

]
, (9)

𝐸 (𝑟, t) = −1
c

∂𝐴(𝑟, t)
∂ t

= −
√

4π

2
√

V ∑
m

ωm

[
𝑄msin𝑘 ·𝑟+ 1

ωm
𝑃mcos𝑘 ·𝑟

]
,(10)

𝐵 (𝑟, t) = ∇×𝐴(𝑟, t)

= −
√

4πc2

2
√

V ∑
m
𝑘m×

[
𝑄msin𝑘 ·𝑟+ 1

ωm
𝑃mcos𝑘 ·𝑟

]
.

(11)

Integrating the square of the electric and magnetic fields over
the volume V and using the orthogonality relation, the total
Hamiltonian is

H =
1

8π

∫
d3r
(
|𝐸|2 + |𝐵|2

)
=

1
2 ∑

m
(𝑃 2

m+ω
2
m𝑄

2
m). (12)
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Take the commutators for the canonical coordinates and
canonical momentums (which can also be got from Eq. (6))
as

[𝑄m,𝑃m] = ih̄. (13)

Now introduce the creation and annihilation operators

𝑎m =
1√
2h̄ω

(ωm𝑄m+i𝑃m), (14)

𝑎†
m =

1√
2h̄ω

(ωm𝑄m− i𝑃m). (15)

Based on the definitions, we have[
𝑎m,𝑎

†
m
]
=

1
2h̄ωm

[ωm𝑄m+i𝑃m,ωm𝑄m− i𝑃m] ,

=
1

2h̄ωm
(−iωm[𝑄m,𝑃m]+ iωm[𝑃m,𝑄m]) = 1. (16)

Considering the positive and negative wave vector sums, the
quantized vector potential, electromagnetic fields, and Hamil-
tonian are

𝐴(𝑟, t) =

√
2πc2h̄

V ∑
m

1√
ωm

[𝑎mei𝑘m·𝑟 +𝑎†
me−i𝑘m·𝑟], (17)

𝐸 (𝑟, t) = i

√
2π h̄√
V ∑

m

√
ωm[𝑎mei𝑘m·𝑟−𝑎†

me−i𝑘m·𝑟], (18)

𝐵 (𝑟, t) = i

√
2πc2h̄

V ∑
m

1√
ωm

𝑘m× [𝑎mei𝑘m·𝑟−𝑎†
me−i𝑘m·𝑟],

(19)

H = ∑
m

Hm = ∑
m

h̄ωm
(
𝑎†

m𝑎m+1/2
)
= ∑

m
h̄ωm (nm+1/2), (20)

with nm = 𝑎†
m𝑎m being the number operator. And the evolu-

tion obeys

ih̄�̇�m = [𝑎m,𝐻], (21)

ih̄�̇�†
m = [𝑎†

m,𝐻]. (22)

3. Polarization and angular momentum
We set ε̂ρ = (1,0,0), ε̂φ = (0,1,0), ε̂z = (0,0,1). Be-

cause 𝐴(𝑟, t) is a vector which can be expressed as 𝐴(𝑟, t) =

∑α ε̂α𝐴α (𝑟, t), the creation and annihilation operators can
be expressed correspondingly as 𝑎m = ∑α ε̂α𝑎m,α (𝑟, t) and
𝑎†

m = ∑α ε̂†
α𝑎

†
m,α (𝑟, t), and we have

𝐴(𝑟, t)

=

√
2πc2h̄

V ∑
m,α

1√
ωm

[ε̂α𝑎m,α ei𝑘m·𝑟 + ε̂†
α𝑎

†
m,α e−i𝑘m·𝑟], (23)

𝐸 (𝑟, t)

= i

√
2π h̄
V ∑

m,α

√
ωm[ε̂α𝑎m,α ei𝑘m·𝑟− ε̂†

α𝑎
†
m,α e−i𝑘m·𝑟], (24)

𝐵 (𝑟, t)

= i

√
2π h̄
V ∑

m,α

c𝑘m√
ωm
× [ε̂α𝑎m,α ei𝑘m·𝑟− ε̂†

α𝑎
†
m,α e−i𝑘m·𝑟]. (25)

And the momentum is given by

𝑝 =
∫

d3r
𝐸×𝐵

4πc

=
i2

4πc
hc
V ∑

m,α
∑

m′,α ′
[ε̂α × (𝑘′× ε̂α ′)]×

∫
d3r(𝑎m,α ei𝑘m·𝑟

−𝑎†
m,α e−i𝑘m·𝑟)(𝑎m′,α ′e

i𝑘m′ ·𝑟−𝑎†
m′,α ′e

−i𝑘m′ ·𝑟)

=
h

4π
∑
m,α

𝑘m[𝑎m,α𝑎
†
m,α +𝑎†

m,α𝑎m,α ] = ∑
m

h̄𝑘mnm. (26)

The zero point term 1/2 is cancelled by the terms of +𝑘m and
−𝑘m.

With the above results we will discuss the quantized field
properties in the nanowire, such as spin and orbital angu-
lar momentums (SAM/OAM) and polarization. It has been
known that the optical angular momentum is

𝐽 =
1

4πc

∫
d3r𝑟× (𝐸×𝐵)

=
1

4πc

∫
d3r [Eα (𝑟×∇)Aα+𝐸×𝐴]. (27)

The first term of the right hand is the orbit part and the second
is the spin part. The orbital angular momentum density on the
surface is (Appendix B)

𝑙𝛼 = (𝑟×∇)Aα |ρ=R = ∑m r̂α ·


− z

R
∂

∂φ
�̂�(

z ∂

∂ρ
−R ∂

∂ z

)
�̂�

∂

∂φ
�̂�

Aα = i

√
2πc2h̄

V ∑m
1√
ωm

r̂α ·R ·

− z
R mkφ

−kz,m
mkφ

[𝑎mα ei𝑘‖,m𝑟

−𝑎†
mα e−i𝑘‖,m𝑟

]
=

√
2πc2h̄

V ∑m
1√
ωm

r̂α ·

 − z
R m

−Rkz,m
m

 [𝑎mα ei𝑘‖,m𝑟−𝑎†
mα e−i𝑘‖,m𝑟]. (28)

With the creation and annihilation operators, the orbital angular momentum is

𝐿 =
1

4πc

∫
d3rEα lα =

ih̄
2V ∑m,m′,α,α ′

ωm√
ωmωm′

ε̂𝛼 · ε̂𝛼′

∫
d3rR

− z
R mkφ

−kz,m
mkφ

[𝑎mα ei𝑘‖,m𝑟−𝑎†
mα e−i𝑘‖,m𝑟

][
𝑎m′α ′e

i𝑘‖,m′𝑟

−𝑎†
m′α ′e

−i𝑘‖,m′𝑟
]
=

ih̄
2 ∑m,α

 0
−Rkz,m

m

(𝑎m,α𝑎
†
m,α+𝑎†

m,α𝑎m,α

)
= ∑m ih̄𝑙m𝑛m, (29)
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𝑙m =

 0
−Rkz,m

m

 , (30)

Lz =
𝐿·𝑘z

|𝑘z|
= ih̄∑m m𝑛m, (31)

where nm,α ≡ 𝑎†
m,α𝑎m,α and 𝑛m ≡ 𝑎†

m𝑎m.
In the above expressions, one can rewrite the phase factor

ei𝑘‖,m𝑟 = ei𝑘m·𝑟 = ei(mφ+kzz)

= [cos(mφ)+ i sin(mφ)]eikzz, (32)

ei𝑘‖,−m𝑟 = ei𝑘−m·𝑟 = ei(−mφ+kzz)

= [cos(mφ)− i sin(mφ)]eikzz, (33)

which shows that the field rotation is very similar to the circu-
larly polarized light. Then if we absorb the phase factor eimφ

into the creation and annihilation operators, we can directly
write

𝑎mei𝑘m·𝑟 = ∑
α

ε̂α𝑎m,α ei𝑘m·𝑟

= ∑
α

λ+α ε̂α𝑎m,α eik‖,m·𝑟 = 𝑎L,meikzz, (34)

𝑎−mei𝑘−m·𝑟 = 𝑎R,meikzz, (35)

where L and R sign here referring the chirality without fur-
ther explanation and we will see the physics meaning later.
𝐴−m (t) = −𝐴m (t), 𝐴m (t) (m = 0,±1,±2, . . .) compose
over-complete bases and so as 𝑎m.

The spin angular momentum density is

𝑠=𝐸×𝐴=
i
h̄
(Eα (𝑆α)βγ

𝐴α), (36)

(𝑆α)βγ
=−ih̄𝜀αβγ . (37)

The operator Sα defined here satisfies the commutation rela-
tion (Appendix B)

[(𝑆i) ,(𝑆 j)] = ih̄𝜀i jk(𝑆k), (38)

which shows that it is a spin operator. Calculating 𝑆2, s = 1
corresponding to spin-1 (SPPs are the quasi-particles) can be
obtained as

𝑆2 = (𝑆i)lm(𝑆i)mn = (−ih̄)2 (𝛿ln𝛿mn−𝛿ln𝛿mn), (39)

(𝑆2)ln = (−ih̄)2 (𝛿ln−3𝛿ln) = 2h̄2𝛿ln, (40)

s(s+1) = 2, s = 1. (41)

The total spin momentum is

𝑆 =
1

4πc

∫
d3r(𝑠) =

1
4πc

∫
d3rEα (𝑆)

βγ
Aα , (42)

𝑆 =
−1
4πc

ihc
V ∑

ma
∑
m′a′

εαβγ ε̂α×ε̂α ′

∫
d3r[𝑎m,α ei𝑘m·𝑟

+𝑎†
m,α e−i𝑘m′ ·𝑟][𝑎m′,α ′e

i𝑘m·𝑟−𝑎†
m′,α ′e

−i𝑘m′ ·𝑟], (43)

𝑆 =
ih
2π

∑
mαα ′

εαβγ ε̂α×ε̂α ′(𝑎m,α𝑎
†
m,α ′ −𝑎†

m,α𝑎m,α ′). (44)

Because both m = m and m = −m′ give the same results,
so we put a factor 2 in the last step. Using ε̂α×ε̂β = �̂�γ

(α,β ,γ = ρ,φ ,z), we get

𝑆 = ∑
mαα ′

ih̄�̂�m,α ′′(𝑎m,α𝑎
†
m,α ′ −𝑎†

m,α𝑎m,α ′). (45)

From the expression one can clearly see that the spin in one
direction (like φ direction) is yielded by the other two com-
ponents (ρ and z) of the field. It also agrees with that there is
transverse spin (𝑆⊥ = Re𝑘×Im𝑘

Re𝑘2 )[46] for surface waves which
is represented by the elliptical trace of the field vector at local
points.

For plane waves, polarization is usually defined as ε̂1 = �̂�

and ε̂2 = �̂�. Then circularly polarized light is expressed as
ε̂L = ε̂+ = 1√

2
(�̂�+ i�̂�) and ε̂R = ε̂− = 1√

2
(�̂�− i�̂�). Follow-

ing this, here we define[47]

ŝα,L = ŝα,+ =
1√
2

(
ε̂β + iε̂γ

)
, (46)

ŝα,R = ŝα,− =
1√
2

(
ε̂β − iε̂γ

)
. (47)

Then

ε̂β𝑎m,β+ε̂γ𝑎m,γ

=
1√
2
(ŝα,L + ŝα,R)𝑎m,β+

1
i
√

2
(ŝα,L− ŝα,R)𝑎m,γ

=
1√
2

(
𝑎m,β − i𝑎m,γ

)
ŝα,L+

1√
2

(
𝑎m,β + i𝑎m,γ

)
ŝα,R. (48)

So we can define new circularly polarized operators

𝑎m,L,α =
1√
2

(
𝑎m,β − i𝑎m,γ

)
, (49)

𝑎m,R,α =
1√
2

(
𝑎m,β + i𝑎m,γ

)
, (50)

𝑎†
m,L,α =

1√
2

(
𝑎†

m,β − i𝑎†
m,γ

)
, (51)

𝑎†
m,R,α =

1√
2

(
𝑎†

m,β + i𝑎†
m,γ

)
, (52)

with
[
𝑎m,L,α ,𝑎

†
m,L,α

]
= 1 and

[
𝑎m,R,α ,𝑎

†
m,R,α

]
= 1. One can

get

𝑎m,β =
1√
2
(𝑎m,L,α +𝑎m,R,α) , (53)

𝑎m,γ =
i√
2
(𝑎m,L,α −𝑎m,R,α) , (54)

𝑎†
m,β =

1√
2

(
𝑎†

m,L,α +𝑎†
m,R,α

)
, (55)

𝑎†
m,γ =

−i√
2

(
𝑎†

m,L,α −𝑎†
m,R,α

)
. (56)

Obviously,

∑
a=α,β

ε̂a𝑎m,a = ∑
γ

(ŝγ,L𝑎m,L,γ+ŝγ,R𝑎m,R,γ), (57)
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∑
a=α,β

ε̂†
a𝑎

†
m,a = ∑

γ

(ŝ†
γ,L𝑎

†
m,L,γ+ŝ†

γ,R𝑎
†
m,R,γ). (58)

Now the spin operator becomes

𝑆 = ∑
mα

h̄�̂�m,α(𝑎
†
m,L,α𝑎m,L,α −𝑎†

m,R,α𝑎m,R,α)

= ∑
mα

h̄�̂�m,α(𝑛m,L,α −𝑛m,R,α), (59)

Ŝα =
Ŝ ·𝑘α

|𝑘α |
. (60)

Then the total angular momentum can be expressed as

𝐽 =𝐿+𝑆 = ∑m,α
ih̄𝑘m,α n̂m,α

+ ∑
m,α

h̄�̂�m,α(𝑛m,L,α −𝑛m,R,α). (61)

4. SPPs on silver nanowires as waveguides
The nanowires performed as plasmonic waveguides are

usually in homogeneous medium and excited with light per-

pendicular to the wire axis on one end.[6] The local symmetry

at the terminus of the wire is broken when the SPPs are ex-

cited, so the phase factor eimφ becomes cos(mφ) or sin(mφ).

For thin wires, the higher-order modes |m|> 2 are cut off.[14]

And the retardation effects are significant, which will cause

the excitation phase difference for |m|= 0 and |m|= 1 modes

as shown in Fig. 2.[48] The three lowest modes are excited si-

multaneously and propagating in a fixed phase delay. When

the wire is excited by a beam of light propagating along y

direction with linear polarization at 45◦ with the wire axis,

the polarization can be decomposed into x and z directions.

The z component will excite m = 0 mode and m′ = +1 mode

(sin(mφ)) with π/2 phase difference. The x component will

excite m = +1 mode (cos(mφ)) with the same phase of the

m = 0 mode. So the potential vector can be expressed as (only

consider the outside of boundary, the inside is similar).

x y

z

k

θ=45Ο m/ m/⇁ m′/⇁

Ez Ex Ez

Fig. 2. Schematic illustration of the plasmonic cylindrical wire excited by light at one terminal for lower order modes. The light goes along y
direction and the polarization is at 45◦ with the z axis which can be decomposed into x and z components.

m/↪ ↩ m/↪ ↩

m/↪ sin↼Φ↽Am/⇁ei¢kz

m/↪ ⇁
m/↪ ↩

m/↪ ↩ l/

l/

l/

AL

AR

A0

(a) (b)

Fig. 3. (a) Schematic illustration of the superposed m = 0 mode and m > 0 modes, which is similar to the vortex waves with l = 1,2,3. The red
lines represent the maximum of the beats waves; the lighter lines indicate the beats behind the wire and the darker ones indicate the beats on the
reader’s side. (b) The scheme of electric field distributions on plasmonic cylindrical nanowires excited by focusing light on one left terminals
with polarization at +45◦(AL), −45◦(AR) and 0◦(A0) directions to z axis.

𝐴l=1 (𝑟, t) = 𝐴0ei(kz,0z−ωt)+𝐴+1 cos(φ)ei(kz,+1z−ωt)

+𝐴+1 cos
(

φ − π

2

)
ei(kz,+1z−ωt+ π

2 )

= 𝐴0ei(kz,0z−ωt)+𝐴+1 cos(φ)ei(kz,+1z−ωt)

+ i𝐴+1 sin(φ)ei(kz,+1z−ωt)

= 𝐴0ei(kz,0z−ωt) +𝐴+1eiφ ei(kz,+1z−ωt). (62)

It can be rewritten as

𝐴R
l=1 (𝑟, t) = 𝐴0ei(kz,0z−ωt) +𝐴+1eiφ ei(kz,+1z−ωt)

= ei(kz,0z−ωt)(𝐴0 +𝐴+1ei(∆kz+φ)), (63)

where ∆k = kz,+1 − kz,0, ∆k�̂� + φ �̂� = ∆𝑘m = 𝑘m,+1 − 𝑘m,0.
When the wire is excited by a linear polarized light at −45◦, it

can be expressed as

𝐴L
l=1 (𝑟, t) = 𝐴0ei(kz,0z−ωt) +𝐴−1e−iφ ei(kz,+1z−ωt)

= ei(kz,0z−ωt)(𝐴0 +𝐴−1ei(∆kz−φ)). (64)

The factor ei(∆kz+φ) shows the spiral propagation of the SPPs
clearly as in Ref. [48] (shown as Fig. 3), where the coher-
ent interference of SPP waves of m = +1 and m′ = +1 gives
a circularly-polarization-like wave (cos(φ)+ i sin(φ) = eiφ ).
The superposition with mode m = 0 will yield beat effect
(ei∆kz), which stretches the circular wave into a helical wave as
the factor ei(∆kz+φ) shown (Fig. 3(a)). The helical wave is very
similar to the vortex wave with orbital angular momentum
l =+1 (Figs. 3(a) and 3(b), 𝐴R

1 ). Analogically, the SPP waves
on cylindrical nanowires with higher modes m = ±2,±3, . . .
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are similar to the vortex wave of l = ±2,±3, . . .. The spiral
is right handed which was mentioned in the polarization part
as 𝑎R,m. Similarly, the superposition of m = 0 and m = −1
modes will cause an l = −1 helical wave (Fig. 3(b), 𝐴L

1). A
special case of the condition is when the incident polarization
is along the wire. Then

𝐴0
l=1 (𝑟, t) = 𝐴0ei(kz,0z−ωt) +𝐴+1 sin(φ)ei(kz,+1z−ωt)

= ei(kz,0z−ωt)(𝐴0 + sin(φ)𝐴+1ei∆kz), (65)

which shows only a beat at the φ = π/2 side of the wire
(Fig. 3(b), 𝐴0

1).
With the vector potential, one can directly achieve the fol-

lowing results in Fock states:

HL |n〉m = ∑
m=0,−1;a

ε̂α h̄ωm
(
𝑎†

m,a𝑎m,a+1/2
)
|n〉m

= ∑
m=0,−1

h̄ωm (nm+1/2), (66)

HR |n〉m = ∑
m=0,+1;a

ε̂α h̄ωm
(
𝑎†

m,a𝑎m,a+1/2
)
|n〉m

= ∑
m=0,+1

h̄ωm (nm+1/2), (67)

𝑝L |n〉m =
h

4π
∑

m=0,−1
𝑘m[𝑎m𝑎

†
m +𝑎†

m𝑎m] |n〉m

= ∑
m=0,−1

h̄𝑘mnm, (68)

𝑝R |n〉m =
h

4π
∑

m=0,+1
𝑘m[𝑎m𝑎

†
m +𝑎†

m𝑎m] |n〉m

= ∑
m=0,+1

h̄𝑘mnm, (69)

LL
z |n〉m =

𝐿 |n〉m ·𝑘z

|𝑘z|
= ih̄∑m=0,−1 m∗nm =−n−1 ∗ ih̄, (70)

LR
z |n〉m =

𝐿 |n〉m ·𝑘z

|𝑘z|
= ih̄∑m=0,+1 m∗nm = n+1 ∗ ih̄, (71)

𝑆L |n〉m = ∑
m=0,−1,a

h̄�̂�m,α(𝑛m,L,α −𝑛m,R,α), (72)

𝑆R |n〉m = ∑
m=0,+1,a

h̄�̂�m,α(𝑛m,L,α −𝑛m,R,α). (73)

Similarly, when the nanowire is excited by right circularly po-
larization (RCP) light, the electric field components of RCP
(Ez = E0,Ex = E0ei π

2 ) illuminate on the nanowire, resulting in
an analogous form of the vector potential

𝐴RCP (𝑟, t)

= 𝐴0ei(kz,0z−ωt) +𝐴+1 cos(φ)ei(kz,+1z−ωt)ei π
2

+𝐴+1 cos
(

φ − π

2

)
ei(kz,+1z−ωt+ π

2 )

= 𝐴0ei(kz,0z−ωt) + i𝐴+1 cos(φ)ei(kz,+1z−ωt)

+ i𝐴+1 sin(φ)ei(kz,+1z−ωt)

= 𝐴0ei(k‖,0z−ωt) + i𝐴+1(cos(φ)

+ sin(φ))ei(kz,+1z−ωt). (74)

The term cos(φ)+ sin(φ) reflects that the oblique distribution
of the SPPs excited by the circularly polarization light is on
the φ = +π/4 side, which is shown in Fig. 4. For symmetry,
the over complete base of m can be used to describe the vector
potential

𝐴RCP (𝑟, t) = 𝐴0ei(kz,0z−ωt) +
1
2
((i +1)𝐴+1eiφ

+𝐴+1 (i−1)e−iφ )ei(kz,+1z−ωt)

= 𝐴0ei(kz,0z−ωt)+
1
2
((i +1)𝐴+1eiφ

−𝐴−1(i−1)e−iφ )ei(kz,+1z−ωt). (75)

i

i ii

ii

k

x y

z ARCP

ALCP

Fig. 4. The scheme of electric field distributions on plasmonic cylindri-
cal nanowires excited by focused LCP (𝐴LCP) and RCP (𝐴RCP) light
on left ends. The insets show the cross section at the wires at positions
i and ii.

From the expression one can see that the pattern should
be the superpostion of the two helical modes m = +1 and
m = −1. It is also consist with the fact that the circularly po-
larized light can be decomposed with two orthorgnal linearly
polarized light for the exciting light.

For LCP light excitation on one end, similarly we have

𝐴LCP (𝑟, t) = 𝐴0ei(kz,0z−ωt)+𝐴+1 cos(φ)ei(kz,+1z−ωt)e−i π
2

+𝐴+1 cos
(

φ − π

2

)
ei(kz,+1z−ωt+ π

2 )

= 𝐴0ei(kz,0z−ωt)− i𝐴+1(cos(φ)

− sin(φ))ei(kz,+1z−ωt) (76)

𝐴LCP (𝑟, t) = 𝐴0ei(kz,0z−ωt) +
1
2
(
(−1+ i)𝐴+1eiφ

+𝐴+1 (−1− i)e−iφ)ei(kz,+1z−ωt)

= 𝐴0ei(kz,0z−ωt) +
1
2
((−1+ i)𝐴+1eiφ

+𝐴−1(1+ i)e−iφ )ei(kz,+1z−ωt). (77)

The coefficient shows that the pattern of 𝐴LCP is the beat at
the φ = −π/4 sides (Fig. 4). And the results in Fock states
can be written as follows:

HLCP |n〉m = ∑
m=0,±1;α

ε̂α h̄ωm
(
𝑎†

m,α𝑎m,α +1/2
)

×
[(

+
1
2

)|m|
|n〉m

]
= ∑

m=0,±1

(
+

1
2

)|m|
h̄ωm (nm+1/2)
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= ∑
m=0,+1

h̄ωm (nm+1/2), (78)

HRCP |n〉m = ∑
m=0,+1

h̄ωm (nm+1/2), (79)

𝑝LCP |n〉m =
h

4π
∑

m=0,±1
𝑘m
[
𝑎m𝑎

†
m +𝑎†

m𝑎m
]

×

[(
+

1
2

)|m|
|n〉m

]

= ∑
m=0,±1

(
+

1
2

)|m|
h̄c𝑘mnm

= ∑
m=0,+1

h̄kmnm, (80)

𝑝RCP |n〉m = ∑
m=0,+1

h̄kmnm, (81)

LLCP
z |n〉m =

𝐿 |n〉m ·𝑘z

|𝑘z|
= ih∑m=0,±1 mn̂m

×

[(
+

1
2

)|m|
|n〉m

]
= 0, (82)

LRCP
z |n〉m =

𝐿 |n〉m ·𝑘z

|𝑘z|
= ih∑m=0,±1 mn̂m

×

[(
+

1
2

)|m|
|n〉m

]
= 0, (83)

𝑆LCP |n〉m = ∑
m=0,±1,α

h̄k̂m,α (𝑛m,L,α −𝑛m,R,α)

×

[(
+

1
2

)|m|
|n〉m

]
, (84)

𝑆RCP |n〉m = ∑
m=0,±1,α

h̄k̂m,α (𝑛m,L,α −𝑛m,R,α)

×

[(
+

1
2

)|m|
|n〉m

]
. (85)

From the expression one can find out that the orbital angular
momentum of SPPs on nanowire is zero under circularly po-
larized light excitation.

5. Discussion
In the above, the electromagnetic modes of the plasmonic

cylindrical wire are deduced and quantized, which are consis-
tent with the quantized charge density wave on the wire with
hydrodynamic method[40,49] due to all of the charge responses
in optics are included in the permittivity of the material. One
can see that the spin of SPPs on the wire contains both trans-
verse components, which agrees with the conclusion of SPPs
on plane surface.[46,50–52] The longitudinal components may
be from the curvature boundary of the wire.[53] The higher
modes also carry orbital angular momentums, which is very
similar to the vortex wave. Along the wire, the orbital angu-
lar momentum quantum number can be 0±,1± 2, . . .. Exper-
imentally, it can be verified by putting the nanowire in homo-
geneous medium and the helix can be shown with quantum
dots.[16] The momentum can be observed by using leakage

Fourier transform microscope.[54] The spin-based effects also
have an unprecedented potential to control light and its po-
larization, thereby promoting the research of optical chirality.
The spin angular momentum and the orbital angular momen-
tum will have coupling[46] and cause some other effects on
the nanowire waveguide. In the experiment, the wires are sure
with limited lengths. If the wire is not very long, the SPPs
will be reflected by the other end and form standing waves,
which are like a Fabry–Pérot cavity.[7] When it interacts with
other systems like atoms or quantum dots, some hyperfine phe-
nomenon may be expected.[55,56] In the above calculations,
the dissipation of the nanowire material is ignored. However,
if the imaginary part of the permittivity is considered (lossy
medium), the commutation relation for canonical coordinate
and momentum is not available any more, and the commuta-
tion relation for the creation and annihilation operators will
have a decay coefficient. When the decay term is absorbed in
the operators, all of the quantities will include the decay ef-
fect, and the ground state energy is also decaying because of
the damping.

6. Conclusion
In this work, the electromagnetic modes on a plasmonic

cylinder waveguide are quantized. The orbital and spin angu-
lar momentums are studied and it can be seen that similar to
the vortex waves, the plasmon modes on cylinder nanowires
carry both orbital angular momentum and spin angular mo-
mentum. The results may be helpful for the future quantum
information applications.

Appendix A: The electromagnetic fields of wire
The electric and magnetic fields satisfy the vector

Helmholtz equations

∇2
{

𝐸
𝐻

}
−µε

∂ 2

∂ t2

{
𝐸
𝐻

}
= 0. (A1)

The vector wavefunctions can be generated from the scalar so-
lutions, which are

ψi = Fi,m (ki⊥ρ)eimφ+ik‖z, (A2)

where F1 (ki⊥ρ) = Hm(k1⊥ρ) and F2 (ki⊥ρ) = Jm(k2⊥ρ), rep-
resenting outside and inside the cylinder, respectively. ki⊥ =√

k2
i − k2

‖ is the vertical component of the wave vector. Two
sets of solutions of the vector Helmholtz equations are given
by

𝑣i =
1
ki
∇× (�̂�ψi) , (A3)

𝑤i =
1
ki
∇×𝑣i, (A4)

where �̂� is a unit vector in the z direction.
Then the curl relations of Maxwell’s equations require 𝐸

and 𝐻 to have the following form:

𝐸 (𝑟) = ai𝑣i (𝑟)+bi𝑤i (𝑟)

087301-7



Chin. Phys. B Vol. 29, No. 8 (2020) 087301

=

{[
im

k j,mρ
a j,mFj,m

(
k j,m⊥ρ

)
+

ik‖,mk j,m⊥

k2
j,m

b j,mF ′j,m
(
k j,m⊥ρ

)]
ρ̂

+

[
−

k j⊥
k j

a j,mF ′j,m
(
k j,m⊥ρ

)
−

mk‖
k2

j ρ
b j,mFj,m

(
k j,m⊥ρ

)]
φ̂

+
k2

j,m⊥

k2
j,m

b j,mFj,m
(
k j,m⊥ρ

)
ẑ
}

ei(mφ+k‖,mz), (A5)

𝐻i (𝑟) =−
i

ωµ0
ki [ai𝑣i (𝑟)+bi𝑤i (𝑟)]

=
−ik j,m

ωµ0

{[
ik‖,mk j,m⊥

k2
j,m

a j,mF ′j,m
(
k j,m⊥ρ

)
+

im
k j,mρ

b j,mFj,m
(
k j,m⊥ρ

)]
ρ̂

+

[
−

mk‖
k2

j ρ
a j,mFj,m

(
k j,m⊥ρ

)
−

k j⊥
k j

b j,mF ′j,m
(
k j,m⊥ρ

)]
φ̂

+
k2

j,m⊥

k2
j,m

b j,mFj,m
(
k j,m⊥ρ

)
ẑ
}

ei(mφ+k‖,mz), (A6)

where ai and bi are constant coefficients.

Appendix B: Angular momentum
This section aims to show the details in the

derivation of orbital and spin angular momentums
𝐽 = 1

4πc
∫

d3r𝑟× (𝐸×𝐵)= 1
4πc
∫

d3r [Eα (𝑟×∇)Aα +𝐸×𝐴]

a) The derivation of orbital angular momentum 𝐿

The first term of the right side of 𝐽 is the orbital part. The
orbital angular momentum density is

𝑙α = (𝑟×∇)Aα =


− z

ρ

∂𝐴ρ

∂𝜑
�̂�(

z ∂𝐴ρ

∂ρ
−ρ

∂𝐴ρ

∂ z

)
�̂�

∂𝐴ρ

∂φ
�̂�



+


− z

ρ

∂𝐴φ

∂φ
�̂�(

z ∂𝐴φ

∂ρ
−ρ

∂𝐴φ

∂ z

)
�̂�

∂𝐴φ

∂φ
�̂�



+


− z

ρ

∂𝐴z
∂φ

�̂�(
z ∂𝐴z

∂ρ
−ρ

∂𝐴z
∂ z

)
�̂�

∂𝐴z
∂φ

�̂�


= i

√
2πc2h̄

V ∑m r̂α ·

 − z
ρ

m
−ρkz,m

m

[𝑎mα ei𝑘‖,m𝑟

−𝑎†
mα e−i𝑘‖,m𝑟

]
. (B1)

Combining with the corresponding electric field component,

the orbital angular momentum is

𝐿=
1

4πc

∫
d3rEα lα

=
ih̄
2V ∑m,m′,α,α ′

ωm√
ωmωm′

ε̂α · ε̂α ′

∫
d3r

 − z
R m

−Rkz,m
m


×
[
𝑎mα ei𝑘‖,m𝑟−𝑎†

mα e−i𝑘‖,m𝑟
]

×
[
𝑎m′α ′e

i𝑘‖,m′𝑟−𝑎†
m′α ′e

−i𝑘‖,m′𝑟
]
. (B2)

We can integrate different components over space as

Iρ =
∫

d3r
(
− z

R
mei𝑘‖,m′𝑟ei𝑘‖,m𝑟

)
= i

∂

∂kz
V δm,m′ . (B3)

The ρ component of OAM 𝐿 should be zero

Iφ =
∫

d3r
(
−Rkz,mei𝑘‖,m′𝑟ei𝑘‖,m𝑟

)
=−Rkz,mV δm,m′ , (B4)

Iz =
∫

d3r
(

mei𝑘‖,m′𝑟ei𝑘‖,m𝑟
)
= mV δm,m′ , (B5)

𝐿=
ih̄
2 ∑m,α

𝑙m,α

(
𝑎m,α𝑎

†
m,α+𝑎†

m,α𝑎m,α

)
= ∑m ih̄𝑙mn̂m, (B6)

where 𝑙m =

( 0
−Rkz,m

m

)
.

b) The derivation of commutation relation of 𝑆

[(𝑆i)(𝑆 j)]ln = (𝑆i)lm (𝑆 j)mn

= (−ih̄)2 𝜀ilm𝜀 jmn = (−ih̄)2 (
δinδl j−δi jδln

)
, (B7)

[(𝑆 j)(𝑆i)]ln = (𝑆 j)lm (𝑆i)mn

= (−ih̄)2 𝜀 jlm𝜀imn = (−ih̄)2 (δ jnδli−δ jiδln) . (B8)

Subtraction of two formulas gives

[(𝑆i)(𝑆 j)− (𝑆 j)(𝑆i)]ln = (−ih̄)2 (
δinδl j−δ jnδli

)
. (B9)

The difference of deltas can be replaced by the product of ε’s

[(𝑆i)(𝑆 j)− (𝑆 j)(𝑆i)]ln = (−ih̄)2 (−𝜀i jk
)
𝜀lnk

=
(

ih̄𝜀i jk
)
[−ih̄𝜀kln] = ih̄𝜀i jk (𝑆k)ln . (B10)

Then the operator Si do satisfy the commutation relation

[(𝑆i) ,(𝑆 j)] = ih̄𝜀i jk (𝑆k) . (B11)
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